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ABSTRACT: A simple, straightforward, and highly efficient
multicomponent one-pot synthesis of a pharmaceutically
interesting diverse kind of functionalized 2-amino-3-cyano-4H-
pyrans and pyran-annulated heterocycles has been developed
based on a low-cost and environmentally benign commercially
available urea as a novel organo-catalyst. The reaction occurs via
tandem Knoevenagel−cyclocondensation of aldehydes, malo-
nonitrile, and C−H-activated acidic compounds in aqueous
ethanol at room temperature. Following this protocol, it was
possible to synthesize 2-amino-3-cyano-pyrano[3,2-c]chromen-
5(4H)-ones (4aa−4al), 2-amino-3-cyano-pyrano[4,3-b]pyran-
5(4H)-ones (4ba−4be), 2-amino-3-cyano-7,8-dihydro-4H-chro-
men-5(6H)-one (4ca−4cr), 1H-pyrano[2,3-d]pyrimidine-2,
4(3H,5H)-diones (4da−4dd), 2-amino-3-cyano-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromenes (4ea−4ec), 2-amino-3-cyano-4H-
pyrans (4fa−4fh), and 1,4-dihydropyrano[2,3-c]pyrazoles (4ga−4gb). The salient features of the present protocol are mild reaction
conditions, excellent yields, high atom-economy, eco-friendly standards, easy isolation of products, no column chromatographic
separation, and reusability of reaction media. Bis-pyranization has also been observed in the reactions of terephthaldehyde.

KEYWORDS: Multicomponent reactions, Pyran-annulated heterocycles, Medicinal chemistry, Urea, Aqueous ethanol,
Room temperature, Chemoselectivity, No column chromatography, Green and sustainable chemistry

■ INTRODUCTION

4H-Pyrans and 4H-pyran-annulated heterocyclic scaffolds
represent a “privileged” structural motif well distributed in
naturally occurring compounds1−3 with a broad spectrum of
significant biological activities that include anticancer,4 cyto-
toxic,5 anti-HIV,6−8 anti-inflammatory,9 antimalarial,10,11 anti-
microbial,12 antihyperglycemic, and antidyslipidemic,13 along
with antineurodegenerative disorders like Alzheimer’s, Parkinson
disease, Huntington’s disease,14 and many more.15,16 Figure 1
represents a glimpse of some of the naturally occurring bioactive
pyran-annulated heterocyclic compounds exhibiting a diverse
kind of pharmaceutical potentials.17−28 Moreover, functionalized
4H-pyran derivatives have played increasing roles in synthetic
approaches to promising compounds in the field of medici-
nal,29,30 agrochemical,31 cosmetics, and pigment industries.32

It is worthwhile to mention that currently a number of drug
molecules bearing the 4H-pyran moiety are in use in the
treatment of various ailments, such as hypertension, asthma,
ischemia, and urinary incontinence.33−37 In addition, such 4H-
pyran derivatives are also administrated to animals suffering from
a disorder responsive to the positive modulation of the AMPA
receptor as an effective remedy.38 2-Amino-3-cyano-4H-pyrans

are found to exhibit significant photochemical activity as well.39

Recently, a series of synthetic 2-amino-3-cyano-4H-pyrans (Figure 2)
has been evaluated to possess potent anticancer,40−51 anti-
bacterial, antifungal,52−57 and antirheumatic58 properties. Be-
sides, the 4H-pyran ring can be transformed to dihydropyridine
(DHP) type systems having promising calcium antagonist
properties.59,60 Such a handful of diverse applications of 4H-
pyrans and pyran-annulated heterocyclic scaffolds in medicinal
chemistry have drawn considerable interest during the last
several years among synthetic chemists to develop useful syn-
thetic routes to these heterocycles of potential interest; as a
result, a good number of methods are already reported.
Among the known procedures, the most straightforward

method for the synthesis of this heterocyclic system involves a
three-component tandem reaction of 1,3-diketones, aldehydes,
and malononitrile utilizing a variety of homogeneous and
heterogeneous catalysts, such as DMAP,61 heteropolyacids,62

basic ionic liquid,63 TBAB,64,65 DBU,66 diammonium hydrogen
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phosphate,67 nano ZnO,68 MgO,69 (S)-proline,70 hexadecyl-
trimethyl ammonium bromide,71 TMGT,72 magnetic nano-
catalyst,73 phenylboronic acid,74 hydroxyapatite (HAP),75 and
per-6-amino-β-cyclodextrin.76 Although these protocols reported
by others find certain merits of their own, still they suffer from a
number of demerits such as long reaction time, harsh reaction
conditions, heating, expensive catalyst/reagents, and high
catalytic loading; besides, most of these reported methods
involve the use of a limited number of C−H-activated acids
(mainly, dimedone and 4-hydroxycoumarin) and aromatic
aldehydes. Therefore, a search for more general, clean, efficient,

feasible, and high yielding routes to this class of O-heterocycles
remains a valid exercise.
In recent times, multicomponent reactions (MCRs) have

gained eminence as a synthetic tool for producing structurally
complex molecular entities with attractive biological features
through the formation and breakage of several carbon−carbon
and carbon−heteroatom bonds in one pot.77−90 It is becoming
increasingly important both in academia and in industry to
design less toxic and more environmentally friendly MCRs. In
addition, implementation of several transformations in a single
manipulation in MCR strategy is highly compatible with the

Figure 1. Some of the naturally occurring bioactive compounds bearing pyran-annulated scaffolds.17−28

Figure 2. Representative examples of pharmacologically active synthetic 2-amino-3-cyano-4H-pyrans.44−51,53,58
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goals of sustainable and “green” chemistry.91,92 As part of our
continuing efforts to develop green synthetic methodologies for
useful organic transformations,93−103 herein, we wish to report a
straightforward, efficient, clean, and high yielding MCR protocol
for the one-pot facile synthesis of biologically relevant diverse
and densely functionalized 2-amino-3-cyano-4H-pyrans and
pyran-annulated heterocyclic scaffolds from the reaction of
aldehydes, malononitrile, and a variety of C−H-activated acids
in aqueous ethanol at room temperature using commercially

available urea as an inexpensive and environmentally benign
organo-catalyst. To the best of our knowledge, this is the first-
time there has been a report on the use of a catalytic amount
of urea in organic synthesis. The results are summarized in
Scheme 1 and Tables 1−7.

■ EXPERIMENTAL SECTION
General. Infrared spectra were recorded using a Shimadzu (FT-IR

8400S) FT-IR spectrophotometer using KBr disc. 1H and 13C NMR

Scheme 1. Synthesis of Densely Functionalized 2-Amino-3-cyano-4H-pyrans and Pyran-Annulated Heterocyclic Scaffolds

Table 1. Optimization of Reaction Conditions in the Synthesis of 2-Amino-3-cyano-4H-pyrans and Pyran-Annulated Heterocycles

entry catalyst solvent time (h) yield (%)a,b

1 no catalyst no solvent 24 Trace
2 no catalyst EtOH 24 39
3 urea (5 mol %) EtOH 11 64
4 urea (10 mol %) EtOH 8 71
5 urea (10 mol %) H2O 24 56
6 urea (10 mol %) EtOH:H2O (1:1 v/v) 6 91
7 urea (10 mol %) no solvent 24 26
8 urea (20 mol %) EtOH:H2O (1:1 v/v) 4.5 87
9 urea (15 mol %) EtOH:H2O (1:1 v/v) 6 91
10 urea (5 mol %) EtOH 8 71
11 thiourea (10 mol %) EtOH:H2O (1:1 v/v) 7 86

aReaction conditions: benzaldehyde (1 mmol), malononitrile (1.1 mmol), and 4-hydroxycoumarin (1 mmol) in the presence or absence of urea/
thiourea in neat/4 mL of water/ethanol/ethanol−water at room temperature. bIsolated yields.
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spectra were obtained at 400 and 100 MHz, respectively, using a Bruker
DRX- 400 spectrometer and DMSO-d6 as the solvent. Mass spectra
(TOF-MS) were measured on a QTOF Micro mass spectrometer.
Elemental analyses were performed with an Elementar Vario EL III
Carlo Erba 1108 microanalyzer instrument. The melting point was
recorded on a Chemiline CL-725 melting point apparatus and is
uncorrected. Thin layer chromatography (TLC) was performed using
silica gel 60 F254 (Merck) plates.
General Procedure for the Synthesis of Pyran-Annulated

Heterocyclic Scaffolds 4. An oven-dried screw cap test tube was
charged with a magnetic stir bar, aldehyde (1; 1 mmol), malononitrile
(2; 1.1 mmol), urea (10mol % as organo-catalyst), and EtOH:H2O (1:1
v/v; 4 mL) in a sequential manner; the reaction mixture was then stirred
vigorously at room temperature for about 20 min. After that, C−H-
activated acid (3) (1 mmol) was added to the stirred reaction mixture,
and the stirring was continued for appropriate range of time as indicated
in respective tables in the text. The progress of the reaction was
monitored by TLC. On completion of the reaction, a solid mass
precipitated out that was filtered off followed by washing with aqueous
ethanol to obtain crude product (4) purified just by recrystallization
from ethanol without carrying out column chromatography. The filtrate
containing residual solvent, catalyst, and substrates obtained upon
filtration of the reaction mixture after completion of reaction could be
successfully reused for a particular entry up to three times without
appreciable loss of catalytic activity. The structure of each purified pyran-
annulated heterocyclic scaffold was confirmed by analytical as well as
spectral studies including FT-IR, 1H NMR, 13C NMR, and TOF-MS
(Supporting Information).
Characterization Data of Few Representative Entries. 2-Amino-5-

oxo-4-(4-(trifluoromethyl)phenyl)-4,5-dihydropyrano[3,2-c]-
chromene-3-carbonitrile (4ag). White solid. Yield 87%. Mp: 252−
254 °C. IR (KBr) νmax/cm

−1: 3360, 3333, 3306, 3190, 3115, 3057, 2914,
2330, 2197, 1711, 1674, 1605, 1587, 1493, 1373, 1319, 1258, 1198,
1157, 1122, 1051, 951, 860, 849, 771, 754, 685, 662. 1H NMR

(400 MHz, DMSO-d6) δ/ppm: 8.01 (1H, d, J = 7.6 Hz, aromatic H),
7.73 (1H, d, J = 7.2 Hz, aromatic H), 7.68 (2H, d, J = 8.4 Hz, aromatic
H), 7.53−7.50 (5H, m, aromatic H + NH2), 7.46 (1H, d, J = 8.4 Hz,
aromatic H), 4.60 (s, 1H, -CH-). 13C NMR (100 MHz, DMSO-d6)
δ/ppm: 160.00, 158.43, 154.23, 152.65, 148.32, 133.53, 129.06 (2C),
125.86 (2C), 125.15, 123.29, 122.98, 119.42, 117.03 (2C), 113.32,
103.55, 57.58, 37.25. TOF-MS: 407.0617 [M + Na]+. Elemental
analysis: Calcd. (%) for C20H11F3N2O3: C, 62.51; H, 2.89; N, 7.29.
Found: C 62.49, H 2.88, N 7.31.

2-Amino-4-(4-fluorophenyl)-7-methyl-5-oxo-4,5-dihydropyrano-
[4,3-b]pyran-3-carbonitrile (4bd). White solid. Yield 88%. Mp: 224−
226 °C. IR (KBr) νmax/cm

−1: 3393, 3310, 3202, 3069, 2889, 2191, 1707,
1612, 1510, 1387, 1244, 1159, 1142, 1051, 970, 824, 613, 588. 1H NMR
(400 MHz, DMSO-d6) δ/ppm: 7.24−7.22 (2H, m, aromatic H), 7.21
(2H, s, NH2), 7.12 (2H, t, J = 8.8 Hz, aromatic H), 6.25 (1H, s, CH),
4.31 (1H, s, CH), 2.20 (3H, s, CH3).

13C NMR (100 MHz, DMSO-d6)
δ/ppm: 163.46, 162.76, 161.84, 160.35, 158.60, 158.47, 140.15, 140.13,
129.91, 129.83, 119.68, 115.63, 115.42, 100.90, 98.38, 58.17, 35.97,
19.69. TOF-MS: 321.0654 [M + Na]+. Elemental analysis: Calcd. (%)
for C16H11FN2O3: C, 64.43; H, 3.72; N 9.39. Found: C, 64.45; H, 3.69;
N, 9.38.

2-Amino-7,7-dimethyl-5-oxo-4-(pyridin-4-yl)-5,6,7,8-tetrahydro-
4H-chromene-3-carbonitrile (4cl). White solid. Yield 92%. Mp: 214−
216 °C. IR (KBr) νmax/cm

−1: 3389, 3312, 3038, 2962, 2878, 2341, 2330,
2183, 1674, 1653, 1599, 1529, 1479, 1360, 1213, 1149, 1041, 922, 852,
787, 658. 1H NMR (400 MHz, DMSO-d6) δ/ppm: 8.49 (2H, d, J = 5.6
Hz, aromatic H), 7.19 (2H, s, NH2), 7.18 (2H, d, J = 1.2 Hz, aromatic
H), 4.23 (1H, s, CH), 2.54 (2H, s, CH2), 2.27 (1H, d, J = 16.0 Hz), 2.14
(1H, d, J = 16.4 Hz), 1.04 (3H, s, CH3), 0.97 (3H, s, CH3).

13C NMR
(100 MHz, DMSO-d6) δ/ppm: 196.11, 163.69, 159.11, 153.45, 150.12
(2C), 122.93 (2C), 119.78, 111.84, 57.17, 50.27, 35.58, 32.23 (2C),
28.68, 27.36. TOF-MS: 296.0589 [M+H]+. Elemental analysis: Calcd.

Table 2. Synthesis of 2-Amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-ones (4aa−4al) and 2-Amino-3-cyano-pyrano[4,3-b]pyran-
5(4H)-ones (4ba−4be)

melting point (°C)

entry activated C−H acid product substituent (R) time (h) yield (%)a,b found reported

1 3a 4aa C6H5 6 91 254−256 256−25866

2 3a 4ab 4-ClC6H4 7 93 262−264 260−26266

3 3a 4ac 4-FC6H4 11 90 261−262 262−26366

4 3a 4ad 4-CH3C6H4 10 91 257−259 258−26061

5 3a 4ae 4-NO2C6H4 8 86 258−260 256−25866

6 3a 4af 3-NO2C6H4 3 97 254−256 257−25870

7 3a 4ag 4-CF3C6H4 8 87 252−254 −
8 3a 4ah 4-OH−C6H4 10 89 262−264 264−266104

9 3a 4ai 2,4-di-Cl−C6H3 7 82 253−255 255−257105

10 3a 4aj 3-OMe, 4-OH−C6H3 12 87 253−255 253−254104

11 3a 4ak CH3(CH2)2 16 83 242−243 243−24566

12 3a 4al (CH3)2CH 15 85 251−253 250−25266

13 3b 4ba C6H5 3 81 218−220 221−22366

14 3b 4bb 3-NO2C6H4 3 84 237−239 235−23769

15 3b 4bc 4-NO2C6H4 7 83 208−210 210−21266

16 3b 4bd 4-FC6H4 6 88 224−226 −
17 3b 4be 4-CN−C6H4 5 80 216−218 −

aReaction conditions: aldehyde (1 mmol), malononitrile (1.1 mmol), and 4-hydroxycoumarin (3a) or 4-hydroxy-6-methylpyrone (3b) (1 mmol)
and 10 mol % urea as catalyst in 4 mL of aqueous ethanol (1:1 v/v) at room temperature. bIsolated yields.
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(%) for C17H17N3O2: C, 69.14; H, 5.80; N, 14.23. Found: C, 69.18; H,
5.81; N, 14.21.
7-Amino-1,3-dimethyl-5-(2-nitrophenyl)-2,4-dioxo-2,3,4,5-tetra-

hydro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (4dd).White solid.
Yield 83%. Mp: 208−209 °C. IR (KBr) νmax/cm

−1: 3389, 3288, 3281,
3178, 3086, 2957, 2338, 2193, 1686, 1665, 1587, 1485, 1391, 1367,
1310, 1182, 1067, 1045, 960, 942, 921, 789, 748, 692. 1H NMR
(400 MHz, DMSO-d6) δ/ppm: 7.85 (1H, d, J = 8.0 Hz, aromatic H), 7.65
(1H, t, J = 8.0 Hz, aromatic H), 7.53 (1H, br s, aromatic H), 7.51 (2H, s,
NH2), 7.45 (1H, t, J = 8.0 and 7.6 Hz, aromatic H), 5.13 (1H, s, CH),
3.35 (3H, s, CH3), 3.02 (3H, s, CH3).

13C NMR (100 MHz, DMSO-d6)
δ/ppm: 160.95, 158.76, 151.57, 150.33, 149.50, 138.87, 133.84, 131.19,
128.47, 124.08, 118.88, 88.78, 57.07, 31.21, 29.57, 28.02. TOF-MS:
378.0814 [M + Na]+. Elemental analysis: Calcd. (%) for C16H13N5O5:
C, 54.09; H, 3.69; N, 19.71. Found: C, 54.11; H, 3.71; N, 19.69.
2-Amino-4-(furan-2-yl)-5,10-dioxo-5,10-dihydro-4H-benzo[g]-

chromene-3-carbonitrile (4eb). Blackish solid. Yield 91%. Mp: 266−
268 °C. IR (KBr) νmax/cm

−1: 3406, 3198, 3070, 2332, 2197, 1794, 1663,
1643, 1580, 1516, 1441, 1352, 1279, 1051, 997, 872, 787, 764, 723, 662,
573. 1H NMR (400 MHz, DMSO-d6) δ/ppm: 8.27 (1H, d, J = 8.4 Hz,
aromatic H), 8.13 (1H, d, J = 7.2 Hz, aromatic H), 8.06 (1H, d, J =
7.2 Hz, aromatic H), 7.99 (1H, d, J = 7.2 Hz, aromatic H), 7.93 (2H, d,
J = 7.2 Hz, aromatic H), 7.85 (2H, br s, NH2), 7.79 (1H, d, J = 8.0 Hz,
aromatic H), 6.17 (1H, s, CH). 13C NMR (100 MHz, DMSO-d6)
δ/ppm: 185.08, 181.67, 160.02, 135.28, 134.88, 133.72, 133.63, 132.28,
130.95, 127.06, 126.48, 126.35, 125.82, 124.25, 124.19, 121.64, 111.40,

60.78. TOF-MS: 341.0541 [M + Na]+. Elemental analysis: Calcd. (%)
for C18H10N2O4: C, 67.92; H, 3.17; N, 8.80. Found: C, 67.98; H, 3.13; N,
8.82.

Methyl 6-amino-5-cyano-4-(4-cyanophenyl)-2-methyl-4H-pyran-
3-carboxylate (4fa). White solid. Yield 91%. Mp: 198−200 °C. IR
(KBr) νmax/cm

−1: 3352, 3304, 3175, 3074, 2916, 2372, 2191, 1676, 1591,
1533, 1523, 1466, 1364, 1279, 1236, 1194, 1103, 974, 943, 868, 829, 793,
733, 663, 619, 565. 1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.72 (2H,
d, J = 8.0 Hz, aromatic H), 7.43 (2H, d, J = 7.2 Hz, aromatic H), 6.62
(2H, s, NH2), 4.52 (1H, s, CH), 3.65 (3H, s, OCH3), 2.46 (3H, s, CH3).
13C NMR (100 MHz, DMSO-d6) δ/ppm: 164.44, 157.44, 156.80,
148.79, 130.94 (2C), 126.87 (2C), 118.06, 117.30, 108.94, 105.04,
55.95, 50.21, 37.80, 17.32. TOF-MS: 318.0857 [M + Na]+. Elemental
analysis: Calcd. (%) for C16H13N3O3: C, 65.08; H, 4.44; N, 14.23.
Found: C, 65.09; H, 4.42; N, 14.26.

tert-Butyl 6-amino-5-cyano-2-methyl-4-(4-nitrophenyl)-4H-
pyran-3-carboxylate (4fg). White solid. Yield 87%. Mp: 209−
211 °C. IR (KBr) νmax/cm

−1: 3406, 3325, 3209, 2972, 2341, 2195,
1681, 1670, 1591, 1506, 1348, 1267, 1169, 953, 837, 619, 488. 1H NMR
(400 MHz, DMSO-d6) δ/ppm: 8.22 (2H, d, J = 8.4, aromatic H), 7.44
(2H, d, J = 8.4 Hz, aromatic H), 7.05 (2H, s, NH2), 4.42 (1H, s, CH),
2.32 (3H, s, CH3), 1.21 (9H, s, CH3).

13C NMR (100MHz, DMSO-d6):
δ = 164.71, 158.86, 157.57, 153.09, 146.75, 128.98 (2C), 124.17 (2C),
119.80, 107.39. 81.30, 56.45, 39.28, 27.87 (3C), 18.54. TOF-MS:
380.1226 [M + Na]+. Elemental analysis: Calcd. (%) for C18H19N3O5:
C, 60.50; H, 5.36; N, 11.76. Found: C, 60.52; H, 5.39; N, 11.74.

Table 3. Synthesis of 2-Amino-3-cyano-7,8-dihydro-4H-chromen-5(6H)-one (4ca−4cr) and 1H-Pyrano[2,3-d]pyrimidine-
2,4(3H,5H)-diones (4da−4dd)

melting point (°C)

entry activated C−H acid product substituent (R) time (h) yield (%)a,b found reported

1 3c 4ca C6H5 3 90 224−226 225−22766

2 3c 4cb 4-ClC6H4 3 87 212−214 213-21461

3 3c 4cc 4-FC6H4 4 88 208−210 210−211106

4 3c 4cd 4-BrC6H4 2 93 205−207 207−20967

5 3c 4ce 4-CH3C6H4 4 91 205−206 204−205107

6 3c 4cf 4-CN−C6H4 2 91 226−228 227−23067

7 3c 4cg 4-NO2C6H4 5 92 183−185 184−186107

8 3c 4ch 3-NO2C6H4 2 90 204−206 205−208107

9 3c 4ci 4-OCH3−C6H4 9 87 195−196 197−199107

10 3c 4cj 3,4-(O−CH2−O)−C6H3 12 96 212−214 211−21371

11 3c 4ck 3,4,5-(OCH3)3−C6H2 16 83 208−210 −
12 3c 4cl 4-pyridyl 6 92 214−216 −
13 3c 4cm 2-furfuryl 4 86 224−226 226−228106

14 3c 4cn CH3(CH2)2 4 85 174−176 172−174108

15 3c 4co (CH3)2CH 6 84 155−157 154−15674

16 3c 4cp 2-NO2C6H4 6 91 221−222 222−22370

17 3c 4cq 2-ClC6H4 7 88 215−217 217−21871

18 3c 4cr 3-BrC6H4 6 86 227−228 228−230111

19 3dc 4da 4-ClC6H4 14 86 236−238 234−237109

20 3dd 4db 4-FC6H4 12 90 194−196 −
21 3dd 4dc 4-CN−C6H4 13 91 202−204 −
22 3dd 4dd 2-NO2C6H4 14 83 208−209 −

aReaction conditions: aldehyde (1; 1 mmol), malononitrile (2; 1.1 mmol), dimedone (3c) or barbutaric acid (3d)c or N,N-dimethylbarbutaric acid
(3d)d (1 mmol) and 10 mol % urea as catalyst in 4 mL of aqueous ethanol (1:1 v/v) at room temperature. bIsolated yields.
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6-Amino-4-(4-chlorophenyl)-3-methyl-1,4-dihydropyrano[2,3-c]-
pyrazole-5-carbonitrile (4gb). White solid. Yield 84%. Mp: 233−
235 °C. IR (KBr) νmax/cm

−1: 3392, 3345, 3288, 3196, 3182, 3018, 2960,
2338, 2185, 1612, 1595, 1493, 1398, 1389, 1308, 1186, 1171, 1055,
1043, 945, 874, 746, 735, 609. 1H NMR (400 MHz, DMSO-d6) δ/ppm:
12.14 (1H, s, NH), 7.38 (2H, d, J = 8.4 Hz aromatic H), 7.20 (2H, d,
J = 8.4 Hz, aromatic H), 6.93 (2H, s, NH2), 4.64 (1H, s, CH), 1.79 (3H,
s, CH3).

13C NMR (100 MHz, DMSO-d6) δ/ppm: 161.33, 155.13,
143.89, 136.10, 131.65, 129.77 (2C), 128.87 (2C), 121.05, 97.61, 57.20,
35.99, 10.14. TOF-MS: 309.0513 [M+Na]+. Elemental analysis: Calcd.
(%) for C14H11ClN4O: C, 58.65; H, 3.87; N, 19.54. Found C, 58.61; H,
3.89; N, 19.52.
2-Amino-4-(4-(2-amino-3-cyano-5-oxo-4,5-dihydropyrano[3,2-

c]chromen-4-yl)phenyl)-5-oxo-4,5-dihydropyrano[3,2-c]chromene-
3-carbonitrile (5a). White solid. Yield 86%. Mp: >280 °C. IR (KBr)
νmax/cm

−1: 3377, 3277, 3269, 3178, 2326, 2197, 1695, 1603, 1587, 1383,
1188, 1051, 964, 735, 554. 1H NMR (400 MHz, DMSO-d6) δ/ppm:
7.90 (2H, d, J = 6.8 Hz, aromatic H), 7.70 (2H, br s, aromatic H), 7.47
(2H, d, J = 10.8 Hz, aromatic H), 7.42 (3H, br s, aromatic H), 7.31 (3H,
d, J = 6.0 Hz, aromatic H), 7.26 (4H, br s, NH2), 4.44 (2H, s, CH).

13C
NMR (100 MHz, DMSO-d6) δ/ppm: 158.97, 158.40 (2C), 153.84,
152.53, 143.73, 133.35 (2C), 128.94 (4C), 128.03 (4C), 127.55 (2C),
125.09 (2C), 122.91 (2C), 119.65 (2C), 116.96, 113.34 (2C), 104.39,

58.40 (2C), 37.37 (2C). TOF-MS: 577.0398 [M + Na]+. Elemental
analysis: Calcd. (%) for C32H18N4O6: C, 69.31; H, 3.27; N, 10.10.
Found: C, 69.28; H, 3.27; N, 10.07.

2-Amino-4-(4- (2-amino-3-cyano-7-methyl -5-oxo-4,5-
dihydropyrano[4,3-b]pyran-4-yl)phenyl)-7-methyl-5-oxo-4,5-
dihydropyrano[4,3-b]pyran-3-carbonitrile (5b). White solid. Yield
90%. Mp: >280. IR (KBr) νmax/cm

−1: 3371, 3188, 2864, 2204, 1709,
1688, 1595, 1373, 1256, 1188, 1151, 1038, 955, 822, 791, 548. 1H NMR
(400 MHz, DMSO-d6) δ/ppm: 7.91 (2H, d, J = 6.8 Hz, aromatic H),
7.47 (2H, d, J = 7.2 Hz, aromatic H), 7.32 (2H, s, NH2), 7.19 (1H, s,
NH2), 7.12 (1H, s, NH2), 6.29 (1H, s, CH), 6.26 (1H, s, CH), 4.42 (1H,
s, CH), 4.25 (1H, s, CH), 2.22 (6H, s, CH3).

13C NMR (100 MHz,
DMSO-d6) δ/ppm: 163.76, 163.38, 161.81, 161.51, 159.04, 158.56,
150.69, 142.66, 131.27 (2C), 130.54, 129.19 (2C), 127.95, 119.48,
114.73, 113.71, 101.25, 100.03, 98.44, 81.37, 57.24, 36.83, 36.27, 19.73
(2C). TOF-MS: 505.0395 [M + Na]+. Elemental analysis: Calcd. (%)
for C26H18N4O6: C, 64.73; H, 3.76; N, 11.61. Found: C, 64.69; H, 3.74;
N, 11.63.

■ RESULTS AND DISCUSSION

Herein, we report a facile access of a diverse range of highly
functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated

Table 4. Synthesis of 2-Amino-3-cyano-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromenes (4ea−4ec) and 2-Amino-3-cyano-4H-
pyrans (4fa−4fh)

melting point (°C)

entry activated C−H acid R2 product substituent (R) time (h) yield (%)a,b found reported

1 3e − 4ea 3-NO2C6H4 6 84 248−249 248−250110

2 3e − 4eb 2-furfuryl 7 91 266−268 −
3 3e − 4ec 4-pyridyl 9 88 272−274 −
4 3f −CH3 4fa 4-CN−C6H4 9 91 198−200 −
5 3f −CH3 4fb 4-NO2C6H4 10 90 192−194 −
6 3f −CH3 4fc 3-NO2C6H4 8 92 204−206 −
7 3f −CH3 4fd 2-NO2C6H4 11 86 200−202 −
8 3f −C2H5 4fe 4-CN−C6H4 7 87 170−172 −
9 3f −C2H5 4ff 3-NO2C6H4 5 92 174−176 171−173111

10 3f −C(CH3)3 4fg 4-NO2C6H4 9 87 209−211 −
11 3f −C(CH3)3 4fh 3-NO2C6H4 6 92 188−190 −

aReaction conditions: aldehyde (1; 1 mmol), malononitrile (2; 1.1 mmol), 2-hydroxynaphtahquinone (3e)/alkylacetoacetate (3f) (1 mmol), and
10 mol % urea as catalyst in 4 mL of aqueous ethanol (1:1 v/v) at room temperature. bIsolated yields.

Table 5. Four-Component Synthesis of 1,4-Dihydropyrano[2,3-c]pyrazoles (4ga−4gb)

melting point (°C)

entry activated C−H acid product substituent (R) time (h) yield (%)a,b found reported

1 3g 4ga 3-NO2C6H5 8 86 194−196 193−19578

2 3g 4gb 4-ClC6H4 12 84 233−235 234−23678
aReaction conditions: ethylacetoacetate (EAA; 1 mmol), hydrazine hydrate (1 mmol), aldehyde (1 mmol), malononitrile (1.1 mmol), and 10 mol %
urea as catalyst in 4 mL of aqueous ethanol (1:1 v/v) at room temperature. bIsolated yields.
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heterocyclic scaffolds, such as 2-amino-3-cyano-pyrano[3,2-c]-
chromen-5(4H)-ones (4aa−4al), 2-amino-3-cyano-pyrano[4,3-b]-
pyran-5(4H)-ones (4ba−4be), 2-amino-3-cyano-7,8-dihydro-
4H -chromen-5(6H)-one (4ca−4cr) , 1H -pyrano[2 ,
3-d]pyrimidine-2,4(3H,5H)-diones (4da−4dd), 2-amino-3-
cyano-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromenes (4ea−
4ec), 2-amino-3-cyano-4H-pyrans (4fa−4fh), 1,4-dihydropyrano-
[2,3-c]pyrazoles (4ga−4gb) and bis-pyrans (5a−5c) via multi-
component one-pot synthesis from the reaction of aldehydes,
malononitrile, and a variety of activated C−H-activated acids in
aqueous ethanol at room temperature using commercially

available urea as inexpensive and environmentally benign
organo-catalyst (Scheme 1).
To optimize the reaction conditions, we first conducted a

series of trial reactions with benzaldehyde (1; 1 mmol),
malononitrile (2; 1.1 mmol), and 4-hydroxycoumarin (3a; 1
mmol) in the absence or presence of urea/thiourea using water,
ethanol, and/or ethanol−water (1:1 v/v) as solvent at room tem-
perature (Table 1). From these preliminary experiments,
10 mol % of urea in aqueous ethanol (1:1 v/v) at room tem-
perature came out as the optimized conditions for the reaction in
terms of yield and time (Table 1, entry 6) for the desired product,

Table 6. Synthesis of Bis-pyrans 5a−5c

aReaction conditions: terephthaldehyde (0.5 mmol), malononitrile (1.1 mmol), 3a/3b/3c (1 mmol), and 10 mol % urea as catalyst in 4 mL of
aqueous ethanol (1:1 v/v) at room temperature. bIsolated yields.

Table 7. Effect of Catalyst on the Substrate Selectivity

entry R1 R2 time (h) 4 (% yield)a,b 4′ (% yield)a,b

1 4-ClC6H4 4-ClC6H4 8 91 0
2 3-NO2C6H4 4-ClC6H4 3 95 0
3 (CH3)2CH CH3 16 83 0

aReaction conditions: aldehyde (1a; 1 mmol), ketone (1b; 1 mmol), malononitrile (2; 1.1 mmol), 3a (1 mmol), and 10 mol % urea as catalyst in
4 mL of aqueous ethanol (1:1 v/v) at room temperature. bIsolated yields.
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2-amino-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c]chromene-3-
carbonitrile (4aa), which was characterized by its physical and
spectral properties.66

Under the optimized conditions, the reaction of 4-
chlorobenzaldehyde with malononitrile (2) and 4-hydroxycou-
marin (3a) was then carried out, and it furnished the product
2-amino-5-oxo-4-(4-chlorophenyl)-4,5-dihydropyrano[3,2-c]-
chromene-3-carbonitrile (4ab) in 93% yield within 7 h (Table 2,
entry 2). To check the generality as well as the effectiveness of
our newly developed protocol, a number of aromatic aldehydes
having substituents such as hydroxy, methoxy, nitro, halogens
and methyl, and aliphatic aldehydes such as butaraldehyde
and isobutaraldehyde were reacted with malononitrile and 4-
hydroxycoumarin using identical reaction conditions; all of them
underwent the reaction smoothly affording the corresponding
2-amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-ones (4ac−4al)
(Table 2, entries 3−12) in excellent yields (82−97%) at room
temperature. To our delight, the reactions attempted by
replacing 4-hydroxycoumarin (3a) with 4-hydroxy-6-methylpyr-
one (3b) (Scheme 1) also underwent successful condensation
to produce the desired 2-amino-3-cyano-pyrano[4,3-b]pyran-
5(4H)-ones (4ba−4be) in good yields (80−88%) within
3−7 h under the similar reaction conditions at room temperature
(Table 2, entries 13−17). Encouraged by these results, we
attempted to extend the present protocol using dimedone (3c)
and barbutaric acid and its N,N-dimethylderivative (3d) as
varying C−H-activated acids. These C−H-activated acids under-
went smooth reactions as well with diverse aldehydes and
malononitrile under the similar reaction conditions (Scheme 1).
The desired products, 2-amino-3-cyano-7,8-dihydro-4H-chromen-
5(6H)-one (4ca−4cr; Table 3, entries 1−18) and 1H-pyrano-
[2,3-d]pyrimidine-2,4(3H,5H)-diones (4da−4dd; Table 3,
entries 19−22) were obtained in good to excellent yields (83−
96%) with reasonable time frame at room temperature under
urea-catalysis (Table 3).
The scope of the present protocol was further investigated

with other C−H-activated acidic compounds such as 2-hydroxy-
1,4-naphthaquinone (3e) and β-ketoesters (3f). Both the C−H-
activated acids 3e and 3f underwent smooth condensation under
the reaction conditions furnishing the desired products, 2-amino-
3-cyano-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromenes
(4ea−4ec) and 2-amino-3-cyano-4H-pyrans (4fa−4fh), respec-
tively in good yields (84−92%) within reasonable time frame

(Table 4). To our delight this reaction protocol was also suc-
cessfully applied for the synthesis of pyran-annulated hetero-
cyclic scaffolds like 1,4-dihydropyrano[2,3-c]pyrazoles (4ga−
4gb; Table 5) via a four-component reaction leading to in situ
generation of 3-methyl-1H-pyrazol-5(4H)-one (3g) that even-
tually undergoes condensation with the aldehydes and malononi-
trile to afford the products in good yield (84−90%). In addition,
bis-pyranization from the reaction between terephthaldehyde,
malononitrile and C−H-activated acids (3a, 3b, and 3c) was also
achieved following this protocol (Table 6).
To measure the selectivity of this method, we carried out some

competitive reactions for the preparation of pyrano[3,2-c]-
chromen-5(4H)-one from aldehydes in the presence of ketones
using 10 mol % of urea as catalyst in aqueous ethanol at room
temperature. It is our delight to note that the aldehydes in
the presence of ketones selectively underwent condensation
with malononitrile and 4-hydroxycoumarine (3a) to afford the
corresponding 2-amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-
ones (4) (Table 7, entries 1−3) in good yields and the starting
ketones were recovered intact.
All the products were isolated pure just by washing with

aqueous ethanol followed by recrystallization from ethanol; no
tedious chromatographic purification was needed. The isolated
products were fully characterized on the basis of analytical data and
detailed spectral studies including FT-IR, 1H NMR, 13C NMR and
TOF-MS. All the known compounds had physical and spectroscopic
data identical to the literature values.61,66,67,69−71,74,78,104−111 Single
crystal X-ray analysis for 2-amino-4-(benzo[d][1,3]dioxol-5-yl)-7,7-
dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile
(4cj) (Table 3, entry 10) was also documented in this present paper
(Figure 3).112

We herein propose a mechanism in Scheme 2 for the
formation of pyran-annulated heterocycles under the reaction
conditions where urea acts as a base. It is supposed that the
Knoevenagel intermediate (6) formed in situ is attacked by the
enolate of the C−H-activated acid (7) giving rise to the adduct
8/9which eventually undergoes ring closure to afford the desired
product 4.
It is worth noting that we reused the filtrate containing residual

solvent, catalyst, and substrates obtained upon filtration of the
reaction mixture after completion of the reaction up to third run
in case of a representative entry (Table 2, entry 1). Addition of
reactants directly into the filtrate without adding further catalyst

Figure 3. (a) ORTEP diagram of compound 4cj. (b) Packing arrangement of molecules viewed down the a-axis.

ACS Sustainable Chemistry & Engineering Research Article

dx.doi.org/10.1021/sc400312n | ACS Sustainable Chem. Eng. 2014, 2, 411−422418



and solvent resulted in the formation of expected product 4aa
with slight loss of catalytic activity at least up to third run (with
respective isolated yields of 91%, 82%, and 73%). However, each
filtrate can only be used for the particular entry due to residual
starting materials. We also examined the feasibility of the pres-
ent method for a somewhat scaled-up (on the gram scale)
experiment with benzaldehyde (1; 10 mmol), malononitrile
(2; 10.5 mmol), and 4-hydroxycoumarin (3a; 10 mmol) using
10 mol % urea at room temperature in ethanol−water (1:1 v/v);
the reaction was found to proceed smoothly affording the desired
product, 2-amino-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c]-
chromene-3-carbonitrile (4aa) in 86% isolated yield within 8 h,
almost similarly in all respects with 1 mmol scale entry (Table 2,
entry 1). This experiment demonstrated the efficiency of the
catalyst for large-scale production as well.

■ CONCLUSIONS

In conclusion, we have developed a very simple, facile, energy-
efficient, and conveniently practical method for easy access to
a wide range of pharmaceutically interesting functionalized
2-amino-3-cyano-4H-pyrans and pyran-annulated heterocycles
in the presence of urea as a novel organo-catalyst via one-pot
tandem Knoevenagel−cyclocondensation of aldehydes, malo-
nonitrile, and C−H-activated acids in aqueous ethanol at room
temperature. Mild reaction conditions, excellent yields, opera-
tional simplicity, absence of tedious separation procedures, clean
reaction profiles, energy-efficiency, and high atom-economy,
as well as the use of inexpensive and environmentally benign
catalysts are the key advantages of the present method. More-
over, reusability of the reaction media is an added advantage
to this protocol. Keeping in mind that the synthetic importance
of such biologically relevant pyran-annulated heterocyclic
scaffolds directly relate to medicinal chemistry, the present
methodology with mild reaction conditions and operational
simplicity offers the possibility of its use with cost-effective
and environmentally friendlier ways for large-scale industrial
syntheses as well.
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■ NOTE ADDED AFTER ASAP PUBLICATION
This article was published ASAP on November 19, 2013, with an
error in Scheme 1 and the Table 3 graphic. The corrected version
was published ASAP on December 17, 2013.
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